City of Junction City, Kansas

Water and Wastewater Treatment Engineering Analysis and Pre-Design

February 17, 2014
Agenda

- **Background**
- **Water Treatment Plant**
 - Key Issues
 - Recommendations
 - Project Phasing and Costs
- **East Wastewater Treatment Plant**
 - Key Issues
 - Recommendations
 - Project Phasing and Costs
- **Southwest Wastewater Treatment Plant**
 - Key Issues
 - Recommendations
 - Project Phasing and Costs
Background

- **Water Treatment Plant**
 - Constructed 1980
- **East Wastewater Treatment Plant**
 - Constructed 1954
 - Most recent upgrade 2000
- **Southwest Wastewater Treatment Plant**
 - Constructed 1996
 - Most Recent Upgrade 2006
 - Nutrient removal study completed February 2013
- **Facility Contract Operations**
 - November 1989 outsourced operations of Water and Wastewater
 - Amended and restated agreement June 2012 – Water and Wastewater Project
Water Treatment Plant
Key Issues – Water Use/Regulatory

• **Overpumpage of Water Rights to Meet Demands**
 – 2011: over by 7.5%; 2012: over by 9.9%
 – Penalties may be assessed by DWR

• **High Unaccounted-For Water**
 – 2012: 25.5%, typical: 10-15%
 – Existing old meters not measuring water use accurately

• **Inaccuracies in Metering at Plant**
 – Raw water meters
 – High and low service pumping meters
Key Issues – Water Supply

- Declining Well Field Capacity
 - Overpumpage of wells
 - Minimal well maintenance
- Hydraulic limitations
 - Well 16 non-operational
 - Recent issues with Well 18
Key Issues – Water Treatment/Lime Softening

- **Calcium Carbonate Deposition**
 - Lack of stabilization/recarbonation
 - Deposition in piping, filters, hot water heaters, etc.
 - Hydraulic limitations
 - Plant piping
 - Distribution system

- **Lime Sludge Lines Plugging**
 - Large, gravity lime sludge piping plugs
 - Softening basins not operated as intended
Key Issues – Water Treatment/Clarification

- Non-Operational Chemical Equipment
 - Ferric sulfate, polymer
 - Overload filters with particulates
Key Issues – Water Treatment/Disinfection

- **Safety of Chlorine Gas System**
 - OSHA concern with chlorine gas piping
 - No means to close valves upon chlorine leak remotely
 - Manual switching from empty to full cylinders

- **Disinfection By-Products**
 - Stage 1 sample site in compliance but elevated
 - Stage 2 IDSE samples showed one remote site that was high
 - Stage 2 compliance began October 1, 2013
Key Issues – High and Low Service Pumping

• Service Issues
 – One low service pump out of service
 – Increased discharge pressure of pumps
 • Due to calcium carbonate deposition
 – 2400V MCC (medium voltage)
 • Disconnect switch unreliable
 • 30 years old – end of useful life

• Replacement Issues
 – Medium voltage (2400V) vs. low voltage (480V)
 • Low voltage reduces capital costs and maintenance
 – Pump motors, soft starts
 – Electrical switchgear, MCC
 – Eliminates transformers
Key Issues – Plant Finished Water Storage

• Maintenance
 – Exterior paint peeling
 • Aesthetics for community
 • Preserve service life of steel
 – Lead paint

• No Redundancy
 – Maintaining tank is problematic

• Mixing
 – Improve turnover of tank contents
Key Issues – Electrical

• Main Switchgear
 – Main switch not operable
 – Cannot turn power off to plant
 – 15kV (high voltage) vs 480V (low voltage)

• Transformers
 – T-1, T-2

• No Back-Up Power
 – Plant and wells not operable during power outage
Key Issues – SCADA/Instrumentation

• No SCADA system
 – Limits productivity of staff / increased manpower
 • Well flow and water level read locally
 • Filter backwash manually initiated and ended

• Instrumentation
 – Existing phone line signal telemetry unreliable
 • Well #6, 11, 17 Controls
Key Issues – Maintenance

- **Piping / Equipment Requires Painting**
 - Wells, basin equipment, plant piping

- **Building Roof**
 - Roof leaks during rain storm
 - Plant staff mop up water or contain in buckets

- **HVAC**
 - Humidity control is an issue
 - Equipment beyond life expectancy
 - Lack of control within the building
Recommendations

• Water Use
 – Overpumpage of Water Rights to Meet Demands
 • Submit application to DWR for water rights through Water Assurance District
 • Implement water conservation rates
 – High Unaccounted-For Water
 • Replace customer meters
 • Install bulk water station
 – Inaccuracies in Plant Metering
 • Replace raw water meter
 • Replace high and low service meters

• Water Supply
 – Declining Well Field Capacity
 • Install a horizontal collector well
 • Implement well maintenance program for existing wells
Recommendations

• Water Treatment – Lime Softening
 – Calcium Carbonate Deposition
 • Install carbon dioxide feed for recarbonation
 • Clean basin weirs, downstream piping of deposition
 – Lime Sludge Lines Plugging
 • Install smaller lines to lagoons with cleanouts; use existing pump station

• Water Treatment - Clarification
 – Non-Operational Chemical Equipment
 • Install new ferric and polymer feed systems
Recommendations

• **Water Treatment – Disinfection**
 – Safety of Chlorine Gas System
 • Convert from pressure feed system to a vacuum feed system
 • Install automatic shut-off valves on ton cylinders
 • Install automatic switchover
 – Disinfection By-Products
 • Install liquid ammonium sulfate feed to convert secondary disinfection to chloramines
Recommendations

• Water Treatment – Low and High Service Pumping
 – Increased discharge pressure
 • Replace high and low service pumps with pumps capable of higher pressure
 • Install surge relief valves for water hammer
 – Electrical
 • Replace MCC – include soft starters for water hammer
 • Replace switchgear / abandon transformers
 • All work above at 480V (low voltage)

• Water Treatment – Plant Finished Water Storage
 – Historically minimal maintenance
 • Take the tank out of service and sandblast and paint the interior and exterior
 – Redundancy
 • Construct an additional finished water storage tank
 – Mixing
 • Install a mixing system inside the tank
Recommendations

• Water Treatment – Electrical
 – Main Switchgear / Transformers
 • Replace at 480V
 • Abandon transformers
 – Emergency Power
 • Install secondary power feed to plant and wells (in lieu of standby generation)

• Water Treatment – SCADA/Instrumentation
 – SCADA System
 • Install a plant SCADA system
 – Instrumentation
 • Replace well controls
 • Replace other instrumentation in the future upon failure to be compatible with SCADA
Recommendations

• **Water Treatment – Maintenance**
 - Piping / Equipment
 - Clean and paint exposed piping and equipment throughout plant including wells
 - Building Roof
 - Replace roof and skylights
 - HVAC
 - Replace HVAC equipment and controls
 - Install a dedicated air handling unit for the laboratory area

• **Other Recommendations**
 - Install a chlorine feed ahead of the aerators for periodic cleaning of the interior
 - Route lagoon decant to sanitary sewer instead of recycling to process
 - Install turbidimeters on individual filter effluent lines to monitor finished water quality and need for additional filtration capacity
 - Construct secondary containment for existing chemicals (current regulations)
 - Install a new gravel layer on well field access road
Project Prioritization

- Does not include distribution system piping
- Immediate Needs
 - Water rights application
 - Chlorine gas system improvements
- Other Projects
 - Phased according to:
 - Regulatory
 - Safety
 - Water quality
 - Capacity
 - Critical Asset
 - Reliability
 - Financial
 - Service Life
 - Productivity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Raw Water Meter</td>
<td></td>
<td>$ 73,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High and Low Service Pipe Painting/Meters/ Surge Valves</td>
<td></td>
<td>$ 110,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recarbonation (Carbon Dioxide Feed)</td>
<td></td>
<td>$ 755,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lime Sludge Improvements</td>
<td></td>
<td>$ 714,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lime Sludge Decant to Sanitary Sewer</td>
<td></td>
<td></td>
<td>$ 20,000</td>
<td></td>
</tr>
<tr>
<td>Liquid Ferric Sulfate Feed System</td>
<td></td>
<td></td>
<td>$ 812,000</td>
<td></td>
</tr>
<tr>
<td>Liquid Polymer Feed System</td>
<td></td>
<td></td>
<td>$ 67,000</td>
<td></td>
</tr>
<tr>
<td>Lime System Improvements</td>
<td></td>
<td>$ 77,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine Gas Feed System Improvements</td>
<td></td>
<td></td>
<td></td>
<td>$ 164,000</td>
</tr>
<tr>
<td>Chloramines Conversion (Ammonia Feed)</td>
<td></td>
<td>$ 137,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine Gas Feed System Improvements</td>
<td></td>
<td>$ 63,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High and Low Service Pump Upgrades/Electrical</td>
<td></td>
<td></td>
<td>$ 763,000</td>
<td></td>
</tr>
<tr>
<td>Replace Transfer Pumps</td>
<td></td>
<td></td>
<td>$ 173,000</td>
<td></td>
</tr>
<tr>
<td>Elevated Water Storage Tank in High Pressure Zone</td>
<td></td>
<td></td>
<td>$ 1,304,000</td>
<td></td>
</tr>
<tr>
<td>Ground Clearwell Improvements (Painting and Mixing)</td>
<td></td>
<td></td>
<td>$ 542,000</td>
<td></td>
</tr>
<tr>
<td>Additional Ground Storage Clearwell</td>
<td></td>
<td></td>
<td>$ 1,344,000</td>
<td></td>
</tr>
<tr>
<td>Plant/Well Emergency Power</td>
<td></td>
<td>$ 210,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCADA/Well Controls</td>
<td></td>
<td></td>
<td>$ 483,000</td>
<td></td>
</tr>
<tr>
<td>Clean Piping and Basin Weirs of Deposition</td>
<td></td>
<td>$ 55,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paint Plant Piping and Equipment</td>
<td></td>
<td></td>
<td>$ 60,000</td>
<td></td>
</tr>
<tr>
<td>Replace Building Roof and Skylights</td>
<td></td>
<td></td>
<td>$ 271,000</td>
<td></td>
</tr>
<tr>
<td>HVAC Improvements</td>
<td></td>
<td></td>
<td>$ 112,000</td>
<td>$ 91,000</td>
</tr>
<tr>
<td>Re-Pave Plant Roadway</td>
<td></td>
<td></td>
<td></td>
<td>$ 208,000</td>
</tr>
<tr>
<td>Gravel Surface Well Field Roadway</td>
<td></td>
<td></td>
<td></td>
<td>$ 116,000</td>
</tr>
<tr>
<td>Bulk Water Station</td>
<td></td>
<td></td>
<td>$ 75,000</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td>$ 7,640,000</td>
<td>$ 1,716,000</td>
<td>$ 3,309,000</td>
</tr>
<tr>
<td>Mobilization, Bonding and General Requirements</td>
<td></td>
<td></td>
<td>$ 382,000</td>
<td>$ 86,000</td>
</tr>
<tr>
<td>Overhead and Profit</td>
<td></td>
<td></td>
<td>$ 764,000</td>
<td>$ 172,000</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td>$ 8,786,000</td>
<td>$ 1,974,000</td>
<td>$ 3,808,000</td>
</tr>
<tr>
<td>Contingency</td>
<td></td>
<td></td>
<td>$ 2,197,000</td>
<td>$ 494,000</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td>$ 10,983,000</td>
<td>$ 2,488,000</td>
<td>$ 4,756,000</td>
</tr>
<tr>
<td>Engineering, Legal, Administrative</td>
<td></td>
<td></td>
<td>$ 2,197,000</td>
<td>$ 494,000</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td>$ 13,180,000</td>
<td>$ 2,982,000</td>
<td>$ 5,707,000</td>
</tr>
<tr>
<td>Additional Projects (Not Subject to Markups)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Conservation Rates</td>
<td></td>
<td></td>
<td>$ 50,000</td>
<td></td>
</tr>
<tr>
<td>Customer Meter Replacements</td>
<td></td>
<td></td>
<td>$ 600,000</td>
<td>$ 1,200,000</td>
</tr>
<tr>
<td>Water Distribution System Sample Stations</td>
<td></td>
<td></td>
<td></td>
<td>$ 108,000</td>
</tr>
<tr>
<td>Distribution System Tank Inspections</td>
<td></td>
<td></td>
<td>$ 80,000</td>
<td></td>
</tr>
<tr>
<td>Spruce Street Booster Pump Station Overhaul</td>
<td></td>
<td></td>
<td></td>
<td>$ 521,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>$ 13,880,000</td>
<td>$ 4,733,000</td>
<td>$ 5,815,000</td>
</tr>
<tr>
<td>TOTAL (ALL PHASES)</td>
<td></td>
<td></td>
<td></td>
<td>$ 24,408,000</td>
</tr>
</tbody>
</table>
East Wastewater Treatment Plant
Key Issues – Preliminary & Primary Treatment

• **Headworks**
 – Gas Detection System Reliability Critical
 – Odor Control – Not Functional
 – Doors, HVAC, Electrical – Severely deteriorated
 – Fine Screens (Hand Rails, Grating) – Upgrade Required
 – Grit Removal - Air Lift Pump, Grit Building Doors, HVAC, Electrical

• **Influent Pump Station**
 – Wet Well Cover – Brittle and collapsed

• **Primary Clarification**
 – Primary Sludge Piping – End of Life
 – Splitter Structure – Uneven Distribution
 – Sludge Pumps, Grinders – End of Life
Key Issues – Secondary Treatment

- **Activated Sludge**
 - Blowers – End of Useful Life
 - Add Blower VFDs, Instrumentation & Controls – Facilitate Proper Process Control, Energy Savings
 - Aeration Diffuser System – Upgrade needed to support capacity
 - Anoxic Mixer – End of Useful Life

- **Secondary Clarifiers**
 - Rehabilitate Clarifiers – Mechanisms require replacement
 - One of two has been fixed to date
 - RAS Pumps, WAS Pumps, Scum Pump - Condition/End of Useful Life
 - Algae in clarifiers needs to be controlled
Key Issues – Biosolids

- **Biosolids Treatment System**
 - Blending Tank – Requires evaluation and recoating
 - Storage Tank – Requires evaluation and recoating; additional capacity needed
 - Sludge Transfer Pumps – Condition/End of Useful Life
 - Tank Blowers - Aged
 - Lime Feed System – End of Useful Life, Deteriorated
 - Lime Feed Room HVAC – Inadequate
Key Issues – Nutrient Removal

• Tankage
 – Need additional zone - Anoxic Zone Required

• Recycle Pumping
 – Required to Support Nitrogen Removal

• Provide Chemical Feed Systems
 – Methanol Feed – Carbon source to facilitate denitrification
 – Alum Feed – Polishing step to meet phosphorus limits
Key Issues – SCADA/Instrumentation

• **No SCADA system**
 – Limits productivity of staff / increased manpower, efficiency of system, operations & maintenance costs increase
 • Alarm response time increased
 • Potential damage to equipment

• **Instrumentation**
 – Aeration System DO Control needed
 • Variable DO concentrations interfere with performance
 – Low DO results in inadequate nitrification
 – High DO wastes energy and can interfere with anoxic zone
Key Issues – Additional East WWTP Needs

- **Site Needs**
 - Laboratory - Small and Deteriorated
 - Locker Room - Small and Deteriorated
 - Pavement (Parking Lot, Walkways, and other deteriorated paved surfaces) - Aged
East WWTP Recommendations

- **Maintenance Needs**
 - Replace Preliminary Treatment Systems
 - Rehabilitate Headworks Building
 - Rehabilitate Primary Clarifier System
 - Rehabilitate Secondary Clarifier System
 - Replace Biosolids Equipment
 - Aeration System Diffusers and DO Control

- **Capacity Needs**
 - Install Additional Biosolids Storage Tanks
East WWTP Recommendations

• Nutrient Removal Needs
 – Modify Existing Secondary Treatment Process
 – Chemical Feed Systems

• Other Recommendations
 – Install SCADA System
 – Remodel Locker Room, Laboratory
 – Replace deteriorated site paving
 – Replace/Upgrade Building HVAC, Electrical
East WWTP Project Prioritization

- Does not include any collection system improvements
- Immediate Needs
 - Replace gas detection/monitoring equipment in screening room
 - Replace failed clarifier bearing
- Other Projects
 - Phased according to:
 - Regulatory
 - Safety
 - Water quality
 - Capacity
 - Critical Asset
 - Reliability
 - Financial
 - Service Life

<table>
<thead>
<tr>
<th>FACILITIES</th>
<th>PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFLUENT PUMP STATION</td>
<td>$41,000</td>
</tr>
<tr>
<td>HEADWORKS BUILDING</td>
<td>$130,000</td>
</tr>
<tr>
<td>GRIT BUILDING</td>
<td>$45,000</td>
</tr>
<tr>
<td>PRIMARY CLARIFIERS</td>
<td>$420,000</td>
</tr>
<tr>
<td>PRIMARY SLUDGE PUMP STATION</td>
<td>$282,000</td>
</tr>
<tr>
<td>ANOXIC BASIN</td>
<td>$0</td>
</tr>
<tr>
<td>AERATION BASINS</td>
<td>$185,000</td>
</tr>
<tr>
<td>SECONDARY CLARIFIERS</td>
<td>$502,000</td>
</tr>
<tr>
<td>RAS/WAS PUMP STATION</td>
<td>$0</td>
</tr>
<tr>
<td>SLUDGE SYSTEM</td>
<td>$298,000</td>
</tr>
<tr>
<td>SITE</td>
<td>$475,000</td>
</tr>
<tr>
<td>BNR IMPROVEMENTS</td>
<td>$0</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>$2,378,000</td>
</tr>
<tr>
<td>Mobilization, Bonding and General Requirements</td>
<td>5.0%</td>
</tr>
<tr>
<td>Overhead and Profit</td>
<td>10.0%</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>$2,735,000</td>
</tr>
<tr>
<td>Contingency</td>
<td>25.0%</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>$3,419,000</td>
</tr>
<tr>
<td>Engineering, Legal, Administrative</td>
<td>20.0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$4,103,000</td>
</tr>
<tr>
<td>TOTAL ALL PHASES</td>
<td>$12,367,000</td>
</tr>
</tbody>
</table>

City of Junction City, Kansas
Southwest Wastewater Treatment Plant
Key Issues – Preliminary & Primary Treatment

• Industrial Pretreatment
 – Rotary Screen Clogging and Solids Handling Issues
 – Rotary Screen – Single Point of Failure
 – pH Control Equipment Not Online
 – DAF Unit Inefficient and at End of Useful Life
 – DAF Building
 • HVAC, Lighting, Roof/Structure

• Domestic Pretreatment
 – Influent Pumps – End of Life
 – Influent Screen – Normal Wear
Key Issues – Secondary Treatment

- **Activated Sludge**
 - Aeration System
 - Replace Leaky Piping, Replace Blowers, Replace and Update Instrumentation & Controls, Install Diffused Aeration
 - Anoxic Zone Mixers

- **Secondary Clarifiers**
 - Secondary Clarifiers – Mechanisms Worn
 - RAS Pumps, WAS Pumps, Scum Pump – End of Useful Life

- **Disinfection**
 - Chemical Feed Pumps – End of Useful Life
Key Issues – Biosolids & Nutrient Removal

- **Biosolids Treatment System**
 - Sludge Transfer Pumps – Worn and Deteriorated
 - Aerobic Digesters
 - Construct additional tankage and retrofit existing sludge storage tank
 - Install aeration systems in digesters and instrumentation and controls

- **Nutrient Removal (BNR) Needs**
 - Anaerobic Basin
 - Convert secondary clarifiers to anoxic basins
 - New secondary clarifiers
 - Chemical feed systems
 - Methanol and Alum Feed Needed
 - Recycle Systems
 - Pumps, Pipes, Electrical and Controls
Southwest WWTP Recommendations

• **Maintenance Needs**
 – Replace Industrial Pretreatment Systems
 – Replace Municipal Preliminary Treatment Systems
 – Rehabilitate Secondary Clarifier System
 – Replace pumps, blowers, and mixers
 – Replace Disinfection Chemical Feed Pumps

• **Capacity Needs**
 – Install Aeration System Diffusers and DO Control (Capacity and Maintenance Need)
 – Install Biosolids Treatment System
Southwest WWTP Recommendations

• BNR Needs
 – Modify Existing Secondary Treatment Process
 • Convert Secondary Clarifiers to Anoxic Zone, Install New Secondary Clarifiers
 – Install New Anaerobic Basin
 – Install Recycle Pumping System
 – Chemical Feed Systems

• Other Recommendations
 – Replace/Upgrade HVAC, Electrical in DAF Building
Southwest WWTP Project Prioritization

• Does not include any collection system improvements

• Immediate Needs
 – Replace sludge stabilization tank mixers
 – Replace 1 WAS Pump
 – Replace 2 influent pumps
 – Replace DAF recycle pumps
 – Replace chlorine dosing pumps
 – Replace gas detection/monitoring equipment and room lighting in domestic screening room
 – Replace room lighting in industrial screening room
 – Replace water boiler for rotary screen

• Other Projects
 – Phased according to:
 • Regulatory
 • Safety
 • Water quality
 • Capacity
 • Critical Asset
 • Reliability
 • Financial
 • Service Life

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 FLOW DIVERSION STRUCTURE</td>
<td>$41,000</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>2 SCREENING - INDUSTRIAL AND DOMESTIC</td>
<td>$163,000</td>
<td>$153,000</td>
<td>$0</td>
</tr>
<tr>
<td>3 ACID FEED SYSTEM</td>
<td>$20,000</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>4 EQUALIZATION BASINS</td>
<td>$0</td>
<td>$169,000</td>
<td>$0</td>
</tr>
<tr>
<td>5 DISSOLVED AIR FLOTATION</td>
<td>$557,000</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>6 BNR</td>
<td>$0</td>
<td>$0</td>
<td>$3,843,000</td>
</tr>
<tr>
<td>7 SELECTOR BASIN</td>
<td>$0</td>
<td>$46,000</td>
<td>$0</td>
</tr>
<tr>
<td>8 AERATION SYSTEM</td>
<td>$899,000</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>9 SECONDARY CLARIFIERS</td>
<td>$3,083,000</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>10 WAS/RAS/SCUM</td>
<td>$41,000</td>
<td>$16,000</td>
<td>$0</td>
</tr>
<tr>
<td>11 SLUDGE SYSTEM</td>
<td>$0</td>
<td>$5,175,000</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL</td>
<td>$4,804,000</td>
<td>$6,559,000</td>
</tr>
<tr>
<td>Mobilization, Bonding and General Requirements</td>
<td>5.0%</td>
<td>$240,000</td>
<td>$328,000</td>
</tr>
<tr>
<td>Overhead and Profit</td>
<td>10.0%</td>
<td>$480,000</td>
<td>$656,000</td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL</td>
<td>$5,524,000</td>
<td>$7,543,000</td>
</tr>
<tr>
<td>Contingency</td>
<td>25.0%</td>
<td>$1,361,000</td>
<td>$1,886,000</td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL</td>
<td>$6,505,000</td>
<td>$9,429,000</td>
</tr>
<tr>
<td>Engineering, Legal, Administrative</td>
<td>20.0%</td>
<td>$1,361,000</td>
<td>$1,886,000</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>$8,266,000</td>
<td>$11,315,000</td>
</tr>
<tr>
<td></td>
<td>TOTAL ALL PHASES</td>
<td>$26,230,000</td>
<td></td>
</tr>
</tbody>
</table>
Next Steps

• **Water and Sewer Rate Analysis**
 - Revenue Bonds
 - Low-interest Loan
 - Grants

• **Discussions with Armour Eckridge to understand their future needs**
Questions